The following sections describe the standard types that are built into the interpreter.
Note
Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was not possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists.
The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions.
Some operations are supported by several object types; in particular, practically all objects can be compared, tested for truth value, and converted to a string (with the repr() function or the slightly different str() function). The latter function is implicitly used when an object is written by the print() function.
Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean operations below. The following values are considered false:
None
False
zero of any numeric type, for example, 0, 0L, 0.0, 0j.
any empty sequence, for example, '', (), [].
any empty mapping, for example, {}.
instances of user-defined classes, if the class defines a __nonzero__() or __len__() method, when that method returns the integer zero or bool value False. [1]
All other values are considered true — so objects of many types are always true.
Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their operands.)
These are the Boolean operations, ordered by ascending priority:
Operation | Result | Notes |
---|---|---|
x or y | if x is false, then y, else x | (1) |
x and y | if x is false, then x, else y | (2) |
not x | if x is false, then True, else False | (3) |
Notes:
Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y and y <= z, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).
This table summarizes the comparison operations:
Operation | Meaning | Notes |
---|---|---|
< | strictly less than | |
<= | less than or equal | |
> | strictly greater than | |
>= | greater than or equal | |
== | equal | |
!= | not equal | (1) |
is | object identity | |
is not | negated object identity |
Notes:
Objects of different types, except different numeric types and different string types, never compare equal; such objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, > and >= operators will raise a TypeError exception when any operand is a complex number.
Instances of a class normally compare as non-equal unless the class defines the __cmp__() method. Refer to Basic customization) for information on the use of this method to effect object comparisons.
Two more operations with the same syntactic priority, in and not in, are supported only by sequence types (below).
There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers. In addition, Booleans are a subtype of plain integers. Plain integers (also just called integers) are implemented using long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the maximum plain integer value for the current platform, the minimum value is -sys.maxint - 1). Long integers have unlimited precision. Floating point numbers are implemented using double in C. All bets on their precision are off unless you happen to know the machine you are working with.
Complex numbers have a real and imaginary part, which are each implemented using double in C. To extract these parts from a complex number z, use z.real and z.imag.
Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers) yield plain integers unless the value they denote is too large to be represented as a plain integer, in which case they yield a long integer. Integer literals with an 'L' or 'l' suffix yield long integers ('L' is preferred because 1l looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point numbers. Appending 'j' or 'J' to a numeric literal yields a complex number with a zero real part. A complex numeric literal is the sum of a real and an imaginary part.
Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types, the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than long integer is narrower than floating point is narrower than complex. Comparisons between numbers of mixed type use the same rule. [2] The constructors int(), long(), float(), and complex() can be used to produce numbers of a specific type.
All built-in numeric types support the following operations. See The power operator and later sections for the operators’ priorities.
Operation | Result | Notes |
---|---|---|
x + y | sum of x and y | |
x - y | difference of x and y | |
x * y | product of x and y | |
x / y | quotient of x and y | (1) |
x // y | (floored) quotient of x and y | (4)(5) |
x % y | remainder of x / y | (4) |
-x | x negated | |
+x | x unchanged | |
abs(x) | absolute value or magnitude of x | (3) |
int(x) | x converted to integer | (2) |
long(x) | x converted to long integer | (2) |
float(x) | x converted to floating point | (6) |
complex(re,im) | a complex number with real part re, imaginary part im. im defaults to zero. | |
c.conjugate() | conjugate of the complex number c. (Identity on real numbers) | |
divmod(x, y) | the pair (x // y, x % y) | (3)(4) |
pow(x, y) | x to the power y | (3)(7) |
x ** y | x to the power y | (7) |
Notes:
For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long integer, regardless of the numeric value.
Conversion from floats using int() or long() truncates toward zero like the related function, math.trunc(). Use the function math.floor() to round downward and math.ceil() to round upward.
See Built-in Functions for a full description.
Complex floor division operator, modulo operator, and divmod().
Deprecated since version 2.3: Instead convert to float using abs() if appropriate.
Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int.
float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and positive or negative infinity.
New in version 2.6.
Python defines pow(0, 0) and 0 ** 0 to be 1, as is common for programming languages.
All numbers.Real types (int, long, and float) also include the following operations:
Operation | Result | Notes |
---|---|---|
math.trunc(x) | x truncated to Integral | |
round(x[, n]) | x rounded to n digits, rounding half to even. If n is omitted, it defaults to 0. | |
math.floor(x) | the greatest integral float <= x | |
math.ceil(x) | the least integral float >= x |
Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that no overflow occurs during the operation).
The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and -).
This table lists the bit-string operations sorted in ascending priority:
Operation | Result | Notes |
---|---|---|
x | y | bitwise or of x and y | |
x ^ y | bitwise exclusive or of x and y | |
x & y | bitwise and of x and y | |
x << n | x shifted left by n bits | (1)(2) |
x >> n | x shifted right by n bits | (1)(3) |
~x | the bits of x inverted |
Notes:
The float type has some additional methods.
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises OverflowError on infinities and a ValueError on NaNs.
New in version 2.6.
Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast, hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when debugging, and in numerical work.
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers, this representation will always include a leading 0x and a trailing p and exponent.
New in version 2.6.
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing whitespace.
New in version 2.6.
Note that float.hex() is an instance method, while float.fromhex() is a class method.
A hexadecimal string takes the form:
[sign] ['0x'] integer ['.' fraction] ['p' exponent]
where the optional sign may by either + or -, integer and fraction are strings of hexadecimal digits, and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float.hex() is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s %a format character or Java’s Double.toHexString are accepted by float.fromhex().
Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3 + 10./16 + 7./16**2) * 2.0**10, or 3740.0:
>>> float.fromhex('0x3.a7p10')
3740.0
Applying the reverse conversion to 3740.0 gives a different hexadecimal string representing the same number:
>>> float.hex(3740.0)
'0x1.d380000000000p+11'
New in version 2.2.
Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the iteration methods.
One method needs to be defined for container objects to provide iteration support:
Return an iterator object. The object is required to support the iterator protocol described below. If a container supports different types of iteration, additional methods can be provided to specifically request iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C API.
The iterator objects themselves are required to support the following two methods, which together form the iterator protocol:
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in the Python/C API.
Return the next item from the container. If there are no further items, raise the StopIteration exception. This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C API.
Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries, and other more specialized forms. The specific types are not important beyond their implementation of the iterator protocol.
The intention of the protocol is that once an iterator’s next() method raises StopIteration, it will continue to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)
Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__() method is implemented as a generator, it will automatically return an iterator object (technically, a generator object) supplying the __iter__() and next() methods. More information about generators can be found in the documentation for the yield expression.
There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.
For other containers see the built in dict and set classes, and the collections module.
String literals are written in single or double quotes: 'xyzzy', "frobozz". See String literals for more about string literals. Unicode strings are much like strings, but are specified in the syntax using a preceding 'u' character: u'abc', u"def". In addition to the functionality described here, there are also string-specific methods described in the String Methods section. Lists are constructed with square brackets, separating items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as a, b, c or (). A single item tuple must have a trailing comma, such as (d,).
Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function buffer(). They don’t support concatenation or repetition.
Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created using the xrange() function. They don’t support slicing, concatenation or repetition, and using in, not in, min() or max() on them is inefficient.
Most sequence types support the following operations. The in and not in operations have the same priorities as the comparison operations. The + and * operations have the same priority as the corresponding numeric operations. [3] Additional methods are provided for Mutable Sequence Types.
This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority). In the table, s and t are sequences of the same type; n, i and j are integers:
Operation | Result | Notes |
---|---|---|
x in s | True if an item of s is equal to x, else False | (1) |
x not in s | False if an item of s is equal to x, else True | (1) |
s + t | the concatenation of s and t | (6) |
s * n, n * s | n shallow copies of s concatenated | (2) |
s[i] | i‘th item of s, origin 0 | (3) |
s[i:j] | slice of s from i to j | (3)(4) |
s[i:j:k] | slice of s from i to j with step k | (3)(5) |
len(s) | length of s | |
min(s) | smallest item of s | |
max(s) | largest item of s |
Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing corresponding elements. This means that to compare equal, every element must compare equal and the two sequences must be of the same type and have the same length. (For full details see Comparisons in the language reference.)
Notes:
When s is a string or Unicode string object the in and not in operations act like a substring test. In Python versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of any length.
Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:
>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]
What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]] * 3 are (pointers to) this single empty list. Modifying any of the elements of lists modifies this single list. You can create a list of different lists this way:
>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]
If i or j is negative, the index is relative to the end of the string: len(s) + i or len(s) + j is substituted. But note that -0 is still 0.
The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. If i or j is greater than len(s), use len(s). If i is omitted or None, use 0. If j is omitted or None, use len(s). If i is greater than or equal to j, the slice is empty.
The slice of s from i to j with step k is defined as the sequence of items with index x = i + n*k such that 0 <= n < (j-i)/k. In other words, the indices are i, i+k, i+2*k, i+3*k and so on, stopping when j is reached (but never including j). If i or j is greater than len(s), use len(s). If i or j are omitted or None, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.
Changed in version 2.4: Formerly, string concatenation never occurred in-place.
Below are listed the string methods which both 8-bit strings and Unicode objects support. Note that none of these methods take keyword arguments.
In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, unicode, list, tuple, buffer, xrange section. To output formatted strings use template strings or the % operator described in the String Formatting Operations section. Also, see the re module for string functions based on regular expressions.
Return a copy of the string with its first character capitalized and the rest lowercased.
For 8-bit strings, this method is locale-dependent.
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments start and end are interpreted as in slice notation.
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding. errors may be given to set a different error handling scheme. The default is 'strict', meaning that encoding errors raise UnicodeError. Other possible values are 'ignore', 'replace' and any other name registered via codecs.register_error(), see section Codec Base Classes.
New in version 2.2.
Changed in version 2.3: Support for other error handling schemes added.
Return an encoded version of the string. Default encoding is the current default string encoding. errors may be given to set a different error handling scheme. The default for errors is 'strict', meaning that encoding errors raise a UnicodeError. Other possible values are 'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' and any other name registered via codecs.register_error(), see section Codec Base Classes. For a list of possible encodings, see section Standard Encodings.
New in version 2.0.
Changed in version 2.3: Support for 'xmlcharrefreplace' and 'backslashreplace' and other error handling schemes added.
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at that position.
Changed in version 2.5: Accept tuples as suffix.
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current column and the given tab size. The column number is reset to zero after each newline occurring in the string. If tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other non-printing characters or escape sequences.
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.
Perform a string formatting operation. The string on which this method is called can contain literal text or replacement fields delimited by braces {}. Each replacement field contains either the numeric index of a positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field is replaced with the string value of the corresponding argument.
>>> "The sum of 1 + 2 is {0}".format(1+2)
'The sum of 1 + 2 is 3'
See Format String Syntax for a description of the various formatting options that can be specified in format strings.
This method of string formatting is the new standard in Python 3.0, and should be preferred to the % formatting described in String Formatting Operations in new code.
New in version 2.6.
Like find(), but raise ValueError when the substring is not found.
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
Return true if all cased characters in the string are lowercase and there is at least one cased character, false otherwise.
For 8-bit strings, this method is locale-dependent.
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.
For 8-bit strings, this method is locale-dependent.
Return true if all cased characters in the string are uppercase and there is at least one cased character, false otherwise.
For 8-bit strings, this method is locale-dependent.
Return a string which is the concatenation of the strings in the iterable iterable. The separator between elements is the string providing this method.
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is a space). The original string is returned if width is less than len(s).
Changed in version 2.4: Support for the fillchar argument.
Return a copy of the string converted to lowercase.
For 8-bit strings, this method is locale-dependent.
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars argument is not a prefix; rather, all combinations of its values are stripped:
>>> ' spacious '.lstrip()
'spacious '
>>> 'www.example.com'.lstrip('cmowz.')
'example.com'
Changed in version 2.2.2: Support for the chars argument.
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the string itself, followed by two empty strings.
New in version 2.5.
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced.
Return the highest index in the string where substring sub is found, such that sub is contained within s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.
Like rfind() but raises ValueError when the substring sub is not found.
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default is a space). The original string is returned if width is less than len(s).
Changed in version 2.4: Support for the fillchar argument.
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two empty strings, followed by the string itself.
New in version 2.5.
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except for splitting from the right, rsplit() behaves like split() which is described in detail below.
New in version 2.4.
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars argument is not a suffix; rather, all combinations of its values are stripped:
>>> ' spacious '.rstrip()
' spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'
Changed in version 2.2.2: Support for the chars argument.
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then there is no limit on the number of splits (all possible splits are made).
If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for example, '1,,2'.split(',') returns ['1', '', '2']). The sep argument may consist of multiple characters (for example, '1<>2<>3'.split('<>') returns ['1', '2', '3']). Splitting an empty string with a specified separator returns [''].
If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are regarded as a single separator, and the result will contain no empty strings at the start or end if the string has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace with a None separator returns [].
For example, ' 1 2 3 '.split() returns ['1', '2', '3'], and ' 1 2 3 '.split(None, 1) returns ['1', '2 3 '].
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true.
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to look for. With optional start, test string beginning at that position. With optional end, stop comparing string at that position.
Changed in version 2.5: Accept tuples as prefix.
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:
>>> ' spacious '.strip()
'spacious'
>>> 'www.example.com'.strip('cmowz.')
'example'
Changed in version 2.2.2: Support for the chars argument.
Return a copy of the string with uppercase characters converted to lowercase and vice versa.
For 8-bit strings, this method is locale-dependent.
Return a titlecased version of the string where words start with an uppercase character and the remaining characters are lowercase.
The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The definition works in many contexts but it means that apostrophes in contractions and possessives form word boundaries, which may not be the desired result:
>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"
A workaround for apostrophes can be constructed using regular expressions:
>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
lambda mo: mo.group(0)[0].upper() +
mo.group(0)[1:].lower(),
s)
>>> titlecase("they're bill's friends.")
"They're Bill's Friends."
For 8-bit strings, this method is locale-dependent.
Return a copy of the string where all characters occurring in the optional argument deletechars are removed, and the remaining characters have been mapped through the given translation table, which must be a string of length 256.
You can use the maketrans() helper function in the string module to create a translation table. For string objects, set the table argument to None for translations that only delete characters:
>>> 'read this short text'.translate(None, 'aeiou')
'rd ths shrt txt'
New in version 2.6: Support for a None table argument.
For Unicode objects, the translate() method does not accept the optional deletechars argument. Instead, it returns a copy of the s where all characters have been mapped through the given translation table which must be a mapping of Unicode ordinals to Unicode ordinals, Unicode strings or None. Unmapped characters are left untouched. Characters mapped to None are deleted. Note, a more flexible approach is to create a custom character mapping codec using the codecs module (see encodings.cp1251 for an example).
Return a copy of the string converted to uppercase.
For 8-bit strings, this method is locale-dependent.
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly. The original string is returned if width is less than len(s).
New in version 2.2.2.
The following methods are present only on unicode objects:
Return True if there are only numeric characters in S, False otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION ONE FIFTH.
Return True if there are only decimal characters in S, False otherwise. Decimal characters include digit characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-INDIC DIGIT ZERO.
String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting or interpolation operator. Given format % values (where format is a string or Unicode object), % conversion specifications in format are replaced with zero or more elements of values. The effect is similar to the using sprintf() in the C language. If format is a Unicode object, or if any of the objects being converted using the %s conversion are Unicode objects, the result will also be a Unicode object.
If format requires a single argument, values may be a single non-tuple object. [4] Otherwise, values must be a tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).
A conversion specifier contains two or more characters and has the following components, which must occur in this order:
When the right argument is a dictionary (or other mapping type), then the formats in the string must include a parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key selects the value to be formatted from the mapping. For example:
>>> print '%(language)s has %(#)03d quote types.' % \
... {'language': "Python", "#": 2}
Python has 002 quote types.
In this case no * specifiers may occur in a format (since they require a sequential parameter list).
The conversion flag characters are:
Flag | Meaning |
---|---|
'#' | The value conversion will use the “alternate form” (where defined below). |
'0' | The conversion will be zero padded for numeric values. |
'-' | The converted value is left adjusted (overrides the '0' conversion if both are given). |
' ' | (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion. |
'+' | A sign character ('+' or '-') will precede the conversion (overrides a “space” flag). |
A length modifier (h, l, or L) may be present, but is ignored as it is not necessary for Python – so e.g. %ld is identical to %d.
The conversion types are:
Conversion | Meaning | Notes |
---|---|---|
'd' | Signed integer decimal. | |
'i' | Signed integer decimal. | |
'o' | Signed octal value. | (1) |
'u' | Obsolete type – it is identical to 'd'. | (7) |
'x' | Signed hexadecimal (lowercase). | (2) |
'X' | Signed hexadecimal (uppercase). | (2) |
'e' | Floating point exponential format (lowercase). | (3) |
'E' | Floating point exponential format (uppercase). | (3) |
'f' | Floating point decimal format. | (3) |
'F' | Floating point decimal format. | (3) |
'g' | Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise. | (4) |
'G' | Floating point format. Uses uppercase exponential format if exponent is less than -4 or not less than precision, decimal format otherwise. | (4) |
'c' | Single character (accepts integer or single character string). | |
'r' | String (converts any Python object using repr()). | (5) |
's' | String (converts any Python object using str()). | (6) |
'%' | No argument is converted, results in a '%' character in the result. |
Notes:
The alternate form causes a leading zero ('0') to be inserted between left-hand padding and the formatting of the number if the leading character of the result is not already a zero.
The alternate form causes a leading '0x' or '0X' (depending on whether the 'x' or 'X' format was used) to be inserted between left-hand padding and the formatting of the number if the leading character of the result is not already a zero.
The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.
The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as they would otherwise be.
The precision determines the number of significant digits before and after the decimal point and defaults to 6.
The %r conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
If the object or format provided is a unicode string, the resulting string will also be unicode.
The precision determines the maximal number of characters used.
See PEP 237.
Since Python strings have an explicit length, %s conversions do not assume that '\0' is the end of the string.
For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute value is over 1e50 are replaced by %g conversions. [5] All other errors raise exceptions.
Additional string operations are defined in standard modules string and re.
The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There are no consistent performance advantages.
XRange objects have very little behavior: they only support indexing, iteration, and the len() function.
List objects support additional operations that allow in-place modification of the object. Other mutable sequence types (when added to the language) should also support these operations. Strings and tuples are immutable sequence types: such objects cannot be modified once created. The following operations are defined on mutable sequence types (where x is an arbitrary object):
Operation | Result | Notes |
---|---|---|
s[i] = x | item i of s is replaced by x | |
s[i:j] = t | slice of s from i to j is replaced by the contents of the iterable t | |
del s[i:j] | same as s[i:j] = [] | |
s[i:j:k] = t | the elements of s[i:j:k] are replaced by those of t | (1) |
del s[i:j:k] | removes the elements of s[i:j:k] from the list | |
s.append(x) | same as s[len(s):len(s)] = [x] | (2) |
s.extend(x) | same as s[len(s):len(s)] = x | (3) |
s.count(x) | return number of i‘s for which s[i] == x | |
s.index(x[, i[, j]]) | return smallest k such that s[k] == x and i <= k < j | (4) |
s.insert(i, x) | same as s[i:i] = [x] | (5) |
s.pop([i]) | same as x = s[i]; del s[i]; return x | (6) |
s.remove(x) | same as del s[s.index(x)] | (4) |
s.reverse() | reverses the items of s in place | (7) |
s.sort([cmp[, key[, reverse]]]) | sort the items of s in place | (7)(8)(9)(10) |
Notes:
t must have the same length as the slice it is replacing.
The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.
x can be any iterable object.
Raises ValueError when x is not found in s. When a negative index is passed as the second or third parameter to the index() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.
Changed in version 2.3: Previously, index() didn’t have arguments for specifying start and stop positions.
When a negative index is passed as the first parameter to the insert() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero, as for slice indices.
Changed in version 2.3: Previously, all negative indices were truncated to zero.
The pop() method is only supported by the list and array types. The optional argument i defaults to -1, so that by default the last item is removed and returned.
The sort() and reverse() methods modify the list in place for economy of space when sorting or reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed list.
The sort() method takes optional arguments for controlling the comparisons.
cmp specifies a custom comparison function of two arguments (list items) which should return a negative, zero or positive number depending on whether the first argument is considered smaller than, equal to, or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The default value is None.
key specifies a function of one argument that is used to extract a comparison key from each list element: key=str.lower. The default value is None.
reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function. This is because cmp is called multiple times for each list element while key and reverse touch each element only once.
Changed in version 2.3: Support for None as an equivalent to omitting cmp was added.
Changed in version 2.4: Support for key and reverse was added.
Starting with Python 2.3, the sort() method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort by department, then by salary grade).
A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference. (For other containers see the built in dict, list, and tuple classes, and the collections module.)
New in version 2.4.
Like other collections, sets support x in set, len(set), and for x in set. Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other sequence-like behavior.
There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be changed using methods like add() and remove(). Since it is mutable, it has no hash value and cannot be used as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another set.
The constructors for both classes work the same:
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a new empty set is returned.
Instances of set and frozenset provide the following operations:
Return the cardinality of set s.
Test x for membership in s.
Test x for non-membership in s.
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersection is the empty set.
New in version 2.6.
Test whether every element in the set is in other.
Test whether the set is a true subset of other, that is, set <= other and set != other.
Test whether every element in other is in the set.
Test whether the set is a true superset of other, that is, set >= other and set != other.
Return a new set with elements from the set and all others.
Changed in version 2.6: Accepts multiple input iterables.
Return a new set with elements common to the set and all others.
Changed in version 2.6: Accepts multiple input iterables.
Return a new set with elements in the set that are not in the others.
Changed in version 2.6: Accepts multiple input iterables.
Return a new set with elements in either the set or other but not both.
Return a new set with a shallow copy of s.
Note, the non-operator versions of union(), intersection(), difference(), and symmetric_difference(), issubset(), and issuperset() methods will accept any iterable as an argument. In contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone constructions like set('abc') & 'cbs' in favor of the more readable set('abc').intersection('cbs').
Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).
Instances of set are compared to instances of frozenset based on their members. For example, set('abc') == frozenset('abc') returns True and so does set('abc') in set([frozenset('abc')]).
The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or a>b. Accordingly, sets do not implement the __cmp__() method.
Since sets only define partial ordering (subset relationships), the output of the list.sort() method is undefined for lists of sets.
Set elements, like dictionary keys, must be hashable.
Binary operations that mix set instances with frozenset return the type of the first operand. For example: frozenset('ab') | set('bc') returns an instance of frozenset.
The following table lists operations available for set that do not apply to immutable instances of frozenset:
Update the set, adding elements from all others.
Changed in version 2.6: Accepts multiple input iterables.
Update the set, keeping only elements found in it and all others.
Changed in version 2.6: Accepts multiple input iterables.
Update the set, removing elements found in others.
Changed in version 2.6: Accepts multiple input iterables.
Update the set, keeping only elements found in either set, but not in both.
Add element elem to the set.
Remove element elem from the set. Raises KeyError if elem is not contained in the set.
Remove element elem from the set if it is present.
Remove all elements from the set.
Note, the non-operator versions of the update(), intersection_update(), difference_update(), and symmetric_difference_update() methods will accept any iterable as an argument.
Note, the elem argument to the __contains__(), remove(), and discard() methods may be a set. To support searching for an equivalent frozenset, the elem set is temporarily mutated during the search and then restored. During the search, the elem set should not be read or mutated since it does not have a meaningful value.
See also
A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only one standard mapping type, the dictionary. (For other containers see the built in list, set, and tuple classes, and the collections module.)
A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such as 1 and 1.0) then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)
Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example: {'jack': 4098, 'sjoerd': 4127} or {4098: 'jack', 4127: 'sjoerd'}, or by the dict constructor.
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments. If no arguments are given, return a new empty dictionary. If the positional argument arg is a mapping object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once, the last value associated with it is retained in the new dictionary.
If keyword arguments are given, the keywords themselves with their associated values are added as items to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to {"one": 2, "two": 3}:
The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
New in version 2.2.
Changed in version 2.3: Support for building a dictionary from keyword arguments added.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):
Return the number of items in the dictionary d.
Return the item of d with key key. Raises a KeyError if key is not in the map.
New in version 2.5: If a subclass of dict defines a method __missing__(), if the key key is not present, the d[key] operation calls that method with the key key as argument. The d[key] operation then returns or raises whatever is returned or raised by the __missing__(key) call if the key is not present. No other operations or methods invoke __missing__(). If __missing__() is not defined, KeyError is raised. __missing__() must be a method; it cannot be an instance variable. For an example, see collections.defaultdict.
Set d[key] to value.
Remove d[key] from d. Raises a KeyError if key is not in the map.
Return True if d has a key key, else False.
New in version 2.2.
Equivalent to not key in d.
New in version 2.2.
Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys().
Remove all items from the dictionary.
Return a shallow copy of the dictionary.
Create a new dictionary with keys from seq and values set to value.
fromkeys() is a class method that returns a new dictionary. value defaults to None.
New in version 2.3.
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None, so that this method never raises a KeyError.
Test for the presence of key in the dictionary. has_key() is deprecated in favor of key in d.
Return a copy of the dictionary’s list of (key, value) pairs.
If items(), keys(), values(), iteritems(), iterkeys(), and itervalues() are called with no intervening modifications to the dictionary, the lists will directly correspond. This allows the creation of (value, key) pairs using zip(): pairs = zip(d.values(), d.keys()). The same relationship holds for the iterkeys() and itervalues() methods: pairs = zip(d.itervalues(), d.iterkeys()) provides the same value for pairs. Another way to create the same list is pairs = [(v, k) for (k, v) in d.iteritems()].
Return an iterator over the dictionary’s (key, value) pairs. See the note for dict.items().
Using iteritems() while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate over all entries.
New in version 2.2.
Return an iterator over the dictionary’s keys. See the note for dict.items().
Using iterkeys() while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate over all entries.
New in version 2.2.
Return an iterator over the dictionary’s values. See the note for dict.items().
Using itervalues() while adding or deleting entries in the dictionary may raise a RuntimeError or fail to iterate over all entries.
New in version 2.2.
Return a copy of the dictionary’s list of keys. See the note for dict.items().
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key is not in the dictionary, a KeyError is raised.
New in version 2.3.
Remove and return an arbitrary (key, value) pair from the dictionary.
popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictionary is empty, calling popitem() raises a KeyError.
If key is in the dictionary, return its value. If not, insert key with a value of default and return default. default defaults to None.
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.
update() accepts either another dictionary object or an iterable of key/value pairs (as a tuple or other iterable of length two). If keyword arguments are specified, the dictionary is then updated with those key/value pairs: d.update(red=1, blue=2).
Changed in version 2.4: Allowed the argument to be an iterable of key/value pairs and allowed keyword arguments.
Return a copy of the dictionary’s list of values. See the note for dict.items().
File objects are implemented using C’s stdio package and can be created with the built-in open() function. File objects are also returned by some other built-in functions and methods, such as os.popen() and os.fdopen() and the makefile() method of socket objects. Temporary files can be created using the tempfile module, and high-level file operations such as copying, moving, and deleting files and directories can be achieved with the shutil module.
When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations where the operation is not defined for some reason, like seek() on a tty device or writing a file opened for reading.
Files have the following methods:
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be open will raise a ValueError after the file has been closed. Calling close() more than once is allowed.
As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement. For example, the following code will automatically close f when the with block is exited:
from __future__ import with_statement # This isn't required in Python 2.6
with open("hello.txt") as f:
for line in f:
print line
In older versions of Python, you would have needed to do this to get the same effect:
f = open("hello.txt")
try:
for line in f:
print line
finally:
f.close()
Note
Not all “file-like” types in Python support use as a context manager for the with statement. If your code is intended to work with any file-like object, you can use the function contextlib.closing() instead of using the object directly.
Flush the internal buffer, like stdio‘s fflush(). This may be a no-op on some file-like objects.
Note
flush() does not necessarily write the file’s data to disk. Use flush() followed by os.fsync() to ensure this behavior.
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the fcntl module or os.read() and friends.
Note
File-like objects which do not have a real file descriptor should not provide this method!
Return True if the file is connected to a tty(-like) device, else False.
Note
If a file-like object is not associated with a real file, this method should not be implemented.
A file object is its own iterator, for example iter(f) returns f (unless f is closed). When a file is used as an iterator, typically in a for loop (for example, for line in f: print line), the next() method is called repeatedly. This method returns the next input line, or raises StopIteration when EOF is hit when the file is open for reading (behavior is undefined when the file is open for writing). In order to make a for loop the most efficient way of looping over the lines of a file (a very common operation), the next() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, combining next() with other file methods (like readline()) does not work right. However, using seek() to reposition the file to an absolute position will flush the read-ahead buffer.
New in version 2.3.
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size argument is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object. An empty string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue reading after an EOF is hit.) Note that this method may call the underlying C function fread() more than once in an effort to acquire as close to size bytes as possible. Also note that when in non-blocking mode, less data than was requested may be returned, even if no size parameter was given.
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when a file ends with an incomplete line). [6] If the size argument is present and non-negative, it is a maximum byte count (including the trailing newline) and an incomplete line may be returned. An empty string is returned only when EOF is encountered immediately.
Note
Unlike stdio‘s fgets(), the returned string contains null characters ('\0') if they occurred in the input.
Read until EOF using readline() and return a list containing the lines thus read. If the optional sizehint argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.
This method returns the same thing as iter(f).
New in version 2.1.
Deprecated since version 2.3: Use for line in file instead.
Set the file’s current position, like stdio‘s fseek(). The whence argument is optional and defaults to os.SEEK_SET or 0 (absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the current position) and os.SEEK_END or 2 (seek relative to the file’s end). There is no return value.
For example, f.seek(2, os.SEEK_CUR) advances the position by two and f.seek(-3, os.SEEK_END) sets the position to the third to last.
Note that if the file is opened for appending (mode 'a' or 'a+'), any seek() operations will be undone at the next write. If the file is only opened for writing in append mode (mode 'a'), this method is essentially a no-op, but it remains useful for files opened in append mode with reading enabled (mode 'a+'). If the file is opened in text mode (without 'b'), only offsets returned by tell() are legal. Use of other offsets causes undefined behavior.
Note that not all file objects are seekable.
Changed in version 2.6: Passing float values as offset has been deprecated.
Return the file’s current position, like stdio‘s ftell().
Note
On Windows, tell() can return illegal values (after an fgets()) when reading files with Unix-style line-endings. Use binary mode ('rb') to circumvent this problem.
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that size. The size defaults to the current position. The current file position is not changed. Note that if a specified size exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new content. Availability: Windows, many Unix variants.
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the file until the flush() or close() method is called.
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list of strings. There is no return value. (The name is intended to match readlines(); writelines() does not add line separators.)
Files support the iterator protocol. Each iteration returns the same result as file.readline(), and iteration ends when the readline() method returns an empty string.
File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should be implemented if they make sense for the particular object.
bool indicating the current state of the file object. This is a read-only attribute; the close() method changes the value. It may not be available on all file-like objects.
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The attribute is read-only and may not be present on all file-like objects. It may also be None, in which case the file uses the system default encoding for converting Unicode strings.
New in version 2.3.
The Unicode error handler used along with the encoding.
New in version 2.6.
The I/O mode for the file. If the file was created using the open() built-in function, this will be the value of the mode parameter. This is a read-only attribute and may not be present on all file-like objects.
If the file object was created using open(), the name of the file. Otherwise, some string that indicates the source of the file object, of the form <...>. This is a read-only attribute and may not be present on all file-like objects.
If Python was built with the --with-universal-newlines option to configure (the default) this read-only attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines encountered while reading the file. The values it can take are '\r', '\n', '\r\n', None (unknown, no newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions were encountered. For files not opened in universal newline read mode the value of this attribute will be None.
Boolean that indicates whether a space character needs to be printed before another value when using the print statement. Classes that are trying to simulate a file object should also have a writable softspace attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python (care may be needed for objects that override attribute access); types implemented in C will have to provide a writable softspace attribute.
New in version 2.5.
Python’s with statement supports the concept of a runtime context defined by a context manager. This is implemented using two separate methods that allow user-defined classes to define a runtime context that is entered before the statement body is executed and exited when the statement ends.
The context management protocol consists of a pair of methods that need to be provided for a context manager object to define a runtime context:
Enter the runtime context and return either this object or another object related to the runtime context. The value returned by this method is bound to the identifier in the as clause of with statements using this context manager.
An example of a context manager that returns itself is a file object. File objects return themselves from __enter__() to allow open() to be used as the context expression in a with statement.
An example of a context manager that returns a related object is the one returned by decimal.localcontext(). These managers set the active decimal context to a copy of the original decimal context and then return the copy. This allows changes to be made to the current decimal context in the body of the with statement without affecting code outside the with statement.
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed. If an exception occurred while executing the body of the with statement, the arguments contain the exception type, value and traceback information. Otherwise, all three arguments are None.
Returning a true value from this method will cause the with statement to suppress the exception and continue execution with the statement immediately following the with statement. Otherwise the exception continues propagating after this method has finished executing. Exceptions that occur during execution of this method will replace any exception that occurred in the body of the with statement.
The exception passed in should never be reraised explicitly - instead, this method should return a false value to indicate that the method completed successfully and does not want to suppress the raised exception. This allows context management code (such as contextlib.nested) to easily detect whether or not an __exit__() method has actually failed.
Python defines several context managers to support easy thread synchronisation, prompt closure of files or other objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially beyond their implementation of the context management protocol. See the contextlib module for some examples.
Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will return a context manager implementing the necessary __enter__() and __exit__() methods, rather than the iterator produced by an undecorated generator function.
Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API. Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.
The interpreter supports several other kinds of objects. Most of these support only one or two operations.
The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather it requires an (external) definition for a module named foo somewhere.)
A special member of every module is __dict__. This is the dictionary containing the module’s symbol table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict__ attribute is not possible (you can write m.__dict__['a'] = 1, which defines m.a to be 1, but you can’t write m.__dict__ = {}). Modifying __dict__ directly is not recommended.
Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file, they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.
See Objects, values and types and Class definitions for these.
Function objects are created by function definitions. The only operation on a function object is to call it: func(argument-list).
There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same operation (to call the function), but the implementation is different, hence the different object types.
See Function definitions for more information.
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as append() on lists) and class instance methods. Built-in methods are described with the types that support them.
The implementation adds two special read-only attributes to class instance methods: m.im_self is the object on which the method operates, and m.im_func is the function implementing the method. Calling m(arg-1, arg-2, ..., arg-n) is completely equivalent to calling m.im_func(m.im_self, arg-1, arg-2, ..., arg-n).
Class instance methods are either bound or unbound, referring to whether the method was accessed through an instance or a class, respectively. When a method is unbound, its im_self attribute will be None and if called, an explicit self object must be passed as the first argument. In this case, self must be an instance of the unbound method’s class (or a subclass of that class), otherwise a TypeError is raised.
Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are actually stored on the underlying function object (meth.im_func), setting method attributes on either bound or unbound methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order to set a method attribute, you need to explicitly set it on the underlying function object:
class C:
def method(self):
pass
c = C()
c.method.im_func.whoami = 'my name is c'
See The standard type hierarchy for more information.
Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a function body. They differ from function objects because they don’t contain a reference to their global execution environment. Code objects are returned by the built-in compile() function and can be extracted from function objects through their func_code attribute. See also the code module.
A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement or the built-in eval() function.
See The standard type hierarchy for more information.
Type objects represent the various object types. An object’s type is accessed by the built-in function type(). There are no special operations on types. The standard module types defines names for all standard built-in types.
Types are written like this: <type 'int'>.
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is exactly one null object, named None (a built-in name).
It is written as None.
This object is used by extended slice notation (see Slicings). It supports no special operations. There is exactly one ellipsis object, named Ellipsis (a built-in name).
It is written as Ellipsis.
Boolean values are the two constant objects False and True. They are used to represent truth values (although other values can also be considered false or true). In numeric contexts (for example when used as the argument to an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool() can be used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).
They are written as False and True, respectively.
See The standard type hierarchy for this information. It describes stack frame objects, traceback objects, and slice objects.
The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of these are not reported by the dir() built-in function.
A dictionary or other mapping object used to store an object’s (writable) attributes.
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This attribute is no longer available.
Deprecated since version 2.2: Use the built-in function dir() to get a list of an object’s attributes. This attribute is no longer available.
The class to which a class instance belongs.
The tuple of base classes of a class object.
The name of the class or type.
The following attributes are only supported by new-style classes.
This attribute is a tuple of classes that are considered when looking for base classes during method resolution.
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is called at class instantiation, and its result is stored in __mro__.
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list of all those references still alive. Example:
>>> int.__subclasses__()
[<type 'bool'>]
Footnotes
[1] | Additional information on these special methods may be found in the Python Reference Manual (Basic customization). |
[2] | As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similarly for tuples. |
[3] | They must have since the parser can’t tell the type of the operands. |
[4] | To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted. |
[5] | These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and without having to know the exact precision of floating point values on a particular machine. |
[6] | The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended in a newline or not (yes this happens!). |