assert_cond2reltol ================== Suggests a relative error, computed from the condition number. Calling Sequence ~~~~~~~~~~~~~~~~ :: rtol = assert_cond2reltol ( condition ) rtol = assert_cond2reltol ( condition , offset ) Parameters ~~~~~~~~~~ :condition : a matrix of doubles, the condition number. The condition number must be strictly positive. : :offset : a matrix of doubles, a shift for the number of required decimal digits (default offset=0). For example, offset=1 increases the accuracy requirement (decreases the relative tolerance by a factor 10^-1), offset=-1 decreases the accuracy requirement (increases the relative tolerance by a factor 10^1). : :rtol : a matrix of doubles, the relative tolerance. The relative tolerance is strictly positive, lower than 1. : Description ~~~~~~~~~~~ Depending on the condition number, returns the corresponding relative tolerance. Any optional parameter equal to the empty matrix [] is set to its default value. We emphasize that this relative tolerance is only a suggestion. Indeed, there may be correct reasons of using a lower or a higher relative tolerance. + Consider the case where an excellent algorithm is able to make accurate computations, even for an ill-conditionned problem. In this case, we may require more accuracy (positive offset). + Consider the case where there is a trade-off between performance and accuracy, where performance wins. In this case, we may require less accuracy (negative offset). Any scalar input argument is expanded to a matrix of doubles of the same size as the other input arguments. We compute the number of required digits d, then the relative tolerance is 10^-d. Examples ~~~~~~~~ :: assert_cond2reltol ( 0 ) // 1.110D-16 assert_cond2reltol ( 1 ) // 1.110D-16 assert_cond2reltol ( 1.e1 ) // 1.110D-15 assert_cond2reltol ( 1.e2 ) // 1.110D-14 assert_cond2reltol ( 1.e3 ) // 1.110D-13 assert_cond2reltol ( 1.e16 ) // 1 assert_cond2reltol ( 1.e17 ) // 1 assert_cond2reltol ( 1.e18 ) // 1 // Matrix input. condition = [0,1,10,100,1000,1.D13,1.D14,1.D15,1.D16,1.D17,1.D18]; expected = [1.110D-16 1.110D-16 1.110D-15 1.110D-14 1.110D-13 0.0011102 0.0111022 0.1110223 1. 1. 1.]; assert_cond2reltol ( condition ) // Using offset // Negative offset : require less accuracy assert_cond2reltol ( 1.e2 , [0 -1] ) // [1.1D-14 1.1D-13] // Positive offset : requires more accuracy // See that the impact of offset is constrained. assert_cond2reltol ( 1.e2 , [0 1 2 3] ) // [1.1D-14 1.1D-15 1.1D-16 1.1D-16] // Negative offset // See that the impact of offset is constrained. assert_cond2reltol ( 1.e14 , [0 -1 -2 -3] ) // [1.1D-02 1.1D-01 1 1] // Plot the relative tolerance depending on the condition condition = `logspace`_(0,18,1000); r = assert_cond2reltol ( condition ); `plot`_(condition,r) h=`gcf`_(); h.children.log_flags="lln"; h.children.children.children.thickness=4; xt = h.children.x_ticks; xt.locations = 10^(0:2:18)'; xt.labels = ["10^0";"10^2";"10^4";"10^6";"10^8";"10^10";"10^12";"10^14";"10^16";"10^18"]; h.children.x_ticks=xt; yt = h.children.y_ticks; yt.locations = 10^-(0:2:18)'; yt.labels = ["10^0";"10^-2";"10^-4";"10^-6";"10^-8";"10^-10";"10^-12";"10^-14";"10^-16";"10^-18"]; h.children.y_ticks=yt; `xtitle`_("Relative tolerance","Condition","Relative tolerance"); r = assert_cond2reltol ( condition , +3 ); `plot`_(condition,r,"r") r = assert_cond2reltol ( condition , -3 ); `plot`_(condition,r,"g") `legend`_(["Offset=0","Offset=+3","Offset=-3"]); History ~~~~~~~ Version Description 5.4.0 Function introduced