ddp === disturbance decoupling Calling Sequence ~~~~~~~~~~~~~~~~ :: [Closed,F,G]=ddp(Sys,zeroed,B1,D1) [Closed,F,G]=ddp(Sys,zeroed,B1,D1,flag,alfa,beta) Arguments ~~~~~~~~~ :Sys `syslin` list containing the matrices `(A,B2,C,D2)`. : :zeroed integer vector, indices of outputs of `Sys` which are zeroed. : :B1 real matrix : :D1 real matrix. `B1` and `D1` have the same number of columns. : :flag string `'ge'` or `'st'` (default) or `'pp'`. : :alpha real or complex vector (loc. of closed loop poles) : :beta real or complex vector (loc. of closed loop poles) : Description ~~~~~~~~~~~ Exact disturbance decoupling (output nulling algorithm). Given a linear system, and a subset of outputs, z, which are to be zeroed, characterize the inputs w of Sys such that the transfer function from w to z is zero. `Sys` is a linear system {A,B2,C,D2} with one input and two outputs ( i.e. Sys: u-->(z,y) ), part the following system defined from `Sys` and `B1,D1`: :: xdot = A x + B1 w + B2 u z = C1 x + D11 w + D12 u y = C2 x + D21 w + D22 u outputs of Sys are partitioned into (z,y) where z is to be zeroed, i.e. the matrices C and D2 are: :: C=[C1;C2] D2=[D12;D22] C1=C(zeroed,:) D12=D2(zeroed,:) The matrix `D1` is partitioned similarly as `D1=[D11;D21]` with `D11=D1(zeroed,:)`. The control is u=Fx+Gw and one looks for matriced `F,G` such that the closed loop system: w-->z given by :: xdot= (A+B2*F) x + (B1 + B2*G) w z = (C1+D12F) x + (D11+D12*G) w has zero transfer transfer function. `flag='ge'`no stability constraints. `flag='st'` : look for stable closed loop system (A+B2*F stable). `flag='pp'` : eigenvalues of A+B2*F are assigned to `alfa` and `beta`. Closed is a realization of the `w-->y` closed loop system :: xdot= (A+B2*F) x + (B1 + B2*G) w y = (C2+D22*F) x + (D21+D22*G) w Stability (resp. pole placement) requires stabilizability (resp. controllability) of (A,B2). Examples ~~~~~~~~ :: `rand`_('seed',0);nx=6;nz=3;nu=2;ny=1; A=`diag`_(1:6);A(2,2)=-7;A(5,5)=-9;B2=[1,2;0,3;0,4;0,5;0,0;0,0]; C1=[`zeros`_(nz,nz),`eye`_(nz,nz)];D12=[0,1;0,2;0,3]; Sys12=`syslin`_('c',A,B2,C1,D12); C=[C1;`rand`_(ny,nx)];D2=[D12;`rand`_(ny,`size`_(D12,2))]; Sys=`syslin`_('c',A,B2,C,D2); [A,B2,C1,D12]=`abcd`_(Sys12); //The matrices of Sys12. my_alpha=-1;my_beta=-2;flag='ge'; [X,dims,F,U,k,Z]=`abinv`_(Sys12,my_alpha,my_beta,flag); `clean`_(X'*(A+B2*F)*X) `clean`_(X'*B2*U) `clean`_((C1+D12*F)*X) `clean`_(D12*U); //Calculating an ad-hoc B1,D1 G1=`rand`_(`size`_(B2,2),3); B1=-B2*G1; D11=-D12*G1; D1=[D11;`rand`_(ny,`size`_(B1,2))]; [Closed,F,G]=ddp(Sys,1:nz,B1,D1,'st',my_alpha,my_beta); closed=`syslin`_('c',A+B2*F,B1+B2*G,C1+D12*F,D11+D12*G); `ss2tf`_(closed) See Also ~~~~~~~~ + `abinv`_ AB invariant subspace + `ui_observer`_ unknown input observer .. _ui_observer: ui_observer.html .. _abinv: abinv.html