findAC ====== discrete-time system subspace identification Calling Sequence ~~~~~~~~~~~~~~~~ :: [A,C] = findAC(S,N,L,R,METH,TOL,PRINTW) [A,C,RCND] = findAC(S,N,L,R,METH,TOL,PRINTW) Arguments ~~~~~~~~~ :S integer, the number of block rows in the block-Hankel matrices : :N integer : :L integer : :R matrix, relevant part of the R factor of the concatenated block- Hankel matrices computed by a call to findr. : :METH integer, an option for the method to use := 1 MOESP method with past inputs and outputs; : := 2 N4SID method; : Default: METH = 3. : :TOL the tolerance used for estimating the rank of matrices. If TOL > 0, then the given value of TOL is used as a lower bound for the reciprocal condition number. Default: prod(size(matrix))*epsilon_machine where epsilon_machine is the relative machine precision. : :PRINTW integer, switch for printing the warning messages. :PRINTW = 1: print warning messages; : := 0 do not print warning messages. : Default: PRINTW = 0. : :A matrix, state system matrix : :C matrix, output system matrix : :RCND vector of length 4, condition numbers of the matrices involved in rank decision : Description ~~~~~~~~~~~ finds the system matrices A and C of a discrete-time system, given the system order and the relevant part of the R factor of the concatenated block-Hankel matrices, using subspace identification techniques (MOESP or N4SID). + [A,C] = findAC(S,N,L,R,METH,TOL,PRINTW) computes the system matrices A and C. The model structure is: x(k+1) = Ax(k) + Bu(k) + Ke(k), k >= 1, y(k) = Cx(k) + Du(k) + e(k), where x(k) and y(k) are vectors of length N and L, respectively. + [A,C,RCND] = findAC(S,N,L,R,METH,TOL,PRINTW) also returns the vector RCND of length 4 containing the condition numbers of the matrices involved in rank decisions. Matrix R, computed by findR, should be determined with suitable arguments METH and JOBD. Examples ~~~~~~~~ :: //generate data from a given linear system A = [ 0.5, 0.1,-0.1, 0.2; 0.1, 0, -0.1,-0.1; -0.4,-0.6,-0.7,-0.1; 0.8, 0, -0.6,-0.6]; B = [0.8;0.1;1;-1]; C = [1 2 -1 0]; SYS=`syslin`_(0.1,A,B,C); nsmp=100; U=`prbs_a`_(nsmp,nsmp/5); Y=(`flts`_(U,SYS)+0.3*`rand`_(1,nsmp,'normal')); // Compute R S=15;L=1; [R,N,SVAL] = `findR`_(S,Y',U'); N=3; METH=3;TOL=-1; [A,C] = findAC(S,N,L,R,METH,TOL); See Also ~~~~~~~~ + `findABCD`_ discrete-time system subspace identification + `findBD`_ initial state and system matrices B and D of a discrete- time system + `findBDK`_ Kalman gain and B D system matrices of a discrete-time system + `findR`_ Preprocessor for estimating the matrices of a linear time- invariant dynamical system + `sorder`_ computing the order of a discrete-time system + `sident`_ discrete-time state-space realization and Kalman gain .. _findBDK: findBDK.html .. _sident: sident.html .. _findR: findR.html .. _sorder: sorder.html .. _findABCD: findABCD.html .. _findBD: findBD.html