ldiv ==== polynomial matrix long division Calling Sequence ~~~~~~~~~~~~~~~~ :: [x]=ldiv(n,d,k) Arguments ~~~~~~~~~ :n,d two real polynomial matrices : :k integer : Description ~~~~~~~~~~~ `x=ldiv(n,d,k)` gives the `k` first coefficients of the long division of `n` by `d` i.e. the Taylor expansion of the rational matrix `[nij(z)/dij(z)]` near infinity. Coefficients of expansion of `nij/dij` are stored in `x((i-1)*n+k,j) k=1:n` Examples ~~~~~~~~ :: wss=`ssrand`_(1,1,3);[a,b,c,d]=`abcd`_(wss); wtf=`ss2tf`_(wss); x1=ldiv(`numer`_(wtf),`denom`_(wtf),5) x2=[c*b;c*a*b;c*a^2*b;c*a^3*b;c*a^4*b] wssbis=`markp2ss`_(x1',5,1,1); wtfbis=`clean`_(`ss2tf`_(wssbis)) x3=ldiv(`numer`_(wtfbis),`denom`_(wtfbis),5) See Also ~~~~~~~~ + `arl2`_ SISO model realization by L2 transfer approximation + `markp2ss`_ Markov parameters to state-space + `pdiv`_ polynomial division .. _arl2: arl2.html .. _markp2ss: markp2ss.html .. _pdiv: pdiv.html