leqr ==== H-infinity LQ gain (full state) Calling Sequence ~~~~~~~~~~~~~~~~ :: [K,X,err]=leqr(P12,Vx) Arguments ~~~~~~~~~ :P12 `syslin` list : :Vx symmetric nonnegative matrix (should be small enough) : :K,X two real matrices : :err a real number (l1 norm of LHS of Riccati equation) : Description ~~~~~~~~~~~ `leqr` computes the linear suboptimal H-infinity LQ full-state gain for the plant `P12=[A,B2,C1,D12]` in continuous or discrete time. `P12` is a `syslin` list (e.g. `P12=syslin('c',A,B2,C1,D12)`). :: [C1' ] [Q S] [ ] * [C1 D12] = [ ] [D12'] [S' R] `Vx` is related to the variance matrix of the noise `w` perturbing `x`; (usually `Vx=gama^-2*B1*B1'`). The gain `K` is such that `A + B2*K` is stable. `X` is the stabilizing solution of the Riccati equation. For a continuous plant: :: (A-B2*`inv`_(R)*S')'*X+X*(A-B2*`inv`_(R)*S')-X*(B2*`inv`_(R)*B2'-Vx)*X+Q-S*`inv`_(R)*S'=0 :: K=-`inv`_(R)*(B2'*X+S) For a discrete time plant: :: X-(Abar'*`inv`_((`inv`_(X)+B2*`inv`_(R)*B2'-Vx))*Abar+Qbar=0 :: K=-`inv`_(R)*(B2'*`inv`_(`inv`_(X)+B2*`inv`_(R)*B2'-Vx)*Abar+S') with `Abar=A-B2*inv(R)*S'` and `Qbar=Q-S*inv(R)*S'` The 3-blocks matrix pencils associated with these Riccati equations are: :: discrete continuous |I -Vx 0| | A 0 B2| |I 0 0| | A Vx B2| z|0 A' 0| - |-Q I -S| s|0 I 0| - |-Q -A' -S | |0 B2' 0| | S' 0 R| |0 0 0| | S' -B2' R| See Also ~~~~~~~~ + `lqr`_ LQ compensator (full state) .. _lqr: lqr.html