ricc ==== Riccati equation Calling Sequence ~~~~~~~~~~~~~~~~ :: [X,RCOND,FERR]=ricc(A,B,C,"cont""method") [X,RCOND,FERR]=ricc(F,G,H,"disc","method") Arguments ~~~~~~~~~ :A,B,C real matrices of appropriate dimensions : :F,G,H real matrices of appropriate dimensions : :X real matrix : :"cont","disc"' imposed string (flag for continuous or discrete) : :method 'schr' or 'sign' for continuous-time systems and 'schr' or 'invf' for discrete-tyme systems : Description ~~~~~~~~~~~ Riccati solver. Continuous time: :: X=ricc(A,B,C,'cont') gives a solution to the continuous time ARE :: A'*X+X*A-X*B*X+C=0 . `B` and `C` are assumed to be nonnegative definite. `(A,G)` is assumed to be stabilizable with `G*G'` a full rank factorization of `B`. `(A,H)` is assumed to be detectable with `H*H'` a full rank factorization of `C`. Discrete time: :: X=ricc(F,G,H,'disc') gives a solution to the discrete time ARE :: X=F'*X*F-F'*X*G1*((G2+G1'*X*G1)^-1)*G1'*X*F+H `F` is assumed invertible and `G = G1*inv(G2)*G1'`. One assumes `(F,G1)` stabilizable and `(C,F)` detectable with `C'*C` full rank factorization of `H`. Use preferably `ric_desc`. C, D are symmetric .It is assumed that the matrices A, C and D are such that the corresponding matrix pencil has N eigenvalues with moduli less than one. Error bound on the solution and a condition estimate are also provided. It is assumed that the matrices A, C and D are such that the corresponding Hamiltonian matrix has N eigenvalues with negative real parts. Examples ~~~~~~~~ :: //Standard formulas to compute Riccati solutions A=`rand`_(3,3);B=`rand`_(3,2);C=`rand`_(3,3);C=C*C';R=`rand`_(2,2);R=R*R'+`eye`_(); B=B*`inv`_(R)*B'; X=ricc(A,B,C,'cont'); `norm`_(A'*X+X*A-X*B*X+C,1) H=[A -B;-C -A']; [T,d]=`schur`_(`eye`_(H),H,'cont');T=T(:,1:d); X1=T(4:6,:)/T(1:3,:); `norm`_(X1-X,1) [T,d]=`schur`_(H,'cont');T=T(:,1:d); X2=T(4:6,:)/T(1:3,:); `norm`_(X2-X,1) // Discrete time case F=A;B=`rand`_(3,2);G1=B;G2=R;G=G1/G2*G1';H=C; X=ricc(F,G,H,'disc'); `norm`_(F'*X*F-(F'*X*G1/(G2+G1'*X*G1))*(G1'*X*F)+H-X) H1=[`eye`_(3,3) G;`zeros`_(3,3) F']; H2=[F `zeros`_(3,3);-H `eye`_(3,3)]; [T,d]=`schur`_(H2,H1,'disc');T=T(:,1:d);X1=T(4:6,:)/T(1:3,:); `norm`_(X1-X,1) Fi=`inv`_(F); Hami=[Fi Fi*G;H*Fi F'+H*Fi*G]; [T,d]=`schur`_(Hami,'d');T=T(:,1:d); Fit=`inv`_(F'); Ham=[F+G*Fit*H -G*Fit;-Fit*H Fit]; [T,d]=`schur`_(Ham,'d');T=T(:,1:d);X2=T(4:6,:)/T(1:3,:); `norm`_(X2-X,1) See Also ~~~~~~~~ + `riccati`_ Riccati equation + `ric_desc`_ Riccati equation + `schur`_ [ordered] Schur decomposition of matrix and pencils Used Functions ~~~~~~~~~~~~~~ See SCI/modules/cacsd/src/slicot/riccpack.f .. _ric_desc: ric_desc.html .. _riccati: riccati.html .. _schur: schur.html