sfact ===== discrete time spectral factorization Calling Sequence ~~~~~~~~~~~~~~~~ :: F=sfact(P) Arguments ~~~~~~~~~ :P real polynomial matrix : Description ~~~~~~~~~~~ Finds `F`, a spectral factor of `P`. `P` is a polynomial matrix such that each root of `P` has a mirror image w.r.t the unit circle. Problem is singular if a root is on the unit circle. `sfact(P)` returns a polynomial matrix `F(z)` which is antistable and such that `P = F(z)* F(1/z) *z^n` For scalar polynomials a specific algorithm is implemented. Algorithms are adapted from Kucera's book. Examples ~~~~~~~~ :: //Simple polynomial example z=`poly`_(0,'z'); p=(z-1/2)*(2-z) w=sfact(p); w*`numer`_(`horner`_(w,1/z)) //matrix example F1=[z-1/2,z+1/2,z^2+2;1,z,-z;z^3+2*z,z,1/2-z]; P=F1*`gtild`_(F1,'d'); //P is symmetric F=sfact(P) `roots`_(`det`_(P)) `roots`_(`det`_(`gtild`_(F,'d'))) //The stable roots `roots`_(`det`_(F)) //The antistable roots `clean`_(P-F*`gtild`_(F,'d')) //Example of continuous time use s=`poly`_(0,'s'); p=-3*(s+(1+%i))*(s+(1-%i))*(s+0.5)*(s-0.5)*(s-(1+%i))*(s-(1-%i));p=`real`_(p); //p(s) = polynomial in s^2 , looks for stable f such that p=f(s)*f(-s) w=`horner`_(p,(1-s)/(1+s)); // bilinear transform w=p((1-s)/(1+s)) wn=`numer`_(w); //take the numerator fn=sfact(wn);f=`numer`_(`horner`_(fn,(1-s)/(s+1))); //Factor and back transform f=f/`sqrt`_(`horner`_(f*`gtild`_(f,'c'),0));f=f*`sqrt`_(`horner`_(p,0)); //normalization `roots`_(f) //f is stable `clean`_(f*`gtild`_(f,'c')-p) //f(s)*f(-s) is p(s) See Also ~~~~~~~~ + `gtild`_ tilde operation + `fspecg`_ stable factorization of continuous time dynamical systems .. _gtild: gtild.html .. _fspecg: fspecg.html