copfac

right coprime factorization of continuous time dynamical systems

Calling Sequence

[N,M,XT,YT]=copfac(G [,polf,polc,tol])

Arguments

:G a continuous-time linear dynamical system. : :polf, polc respectively the poles of XT and YT and the poles of

n and M (default values =-1).
: :tol real threshold for detecting stable poles (default value
100*%eps)

: :N,M,XT,YT continuous-time linear dynamical systems. :

Description

[N,M,XT,YT]=copfac(G,[polf,polc,[tol]]) returns a right coprime factorization of G.

G= N*M^-1 where N and M are stable, proper and right coprime. (i.e. [N M] left-invertible with stability)

XT and YT satisfy:

[XT -YT].[M N]’ = eye (Bezout identity)

G is assumed stabilizable and detectable.

See Also

  • `syslin`_ linear system definition
  • `lcf`_ Continuous time dynamical systems normalized coprime factorization

History

Version Description 5.4.0 Sl is now checked for continuous time linear dynamical system. This modification has been introduced by this `commit`_ .. _lcf: lcf.html .. _syslin: syslin.html .. _commit: http://gitweb.scilab.org/?p=scilab.git;a=commit;h=3d7083daae3339813ba747c8adcda1f9599bb80d

Table Of Contents

This Page