Parameter identification based on measured data
[p,err]=datafit([imp,] G [,DG],Z [,W],[contr],p0,[algo],[df0,[mem]],
[work],[stop],['in'])
: :G function descriptor (e=G(p,z), e: ne x 1, p: np x 1, z: nz x 1) : :DG partial of G wrt p function descriptor (optional; S=DG(p,z), S:
ne x np)
: :Z matrix [z_1,z_2,...z_n] where z_i (nz x 1) is the ith measurement : :W weighting matrix of size ne x ne (optional; defaut no
ponderation)
: :p0 initial guess (size np x 1) : :algo ‘qn’ or ‘gc’ or ‘nd’ . This string stands for quasi-
Newton (default), conjugate gradient or non-differentiable respectively. Note that ‘nd’ does not accept bounds on x ).
: :stop sequence of optional parameters controlling the convergence of the algorithm. stop= ‘ar’,nap, [iter [,epsg [,epsf [,epsx]]]]
“ar” reserved keyword for stopping rule selection defined as follows: : :nap maximum number of calls to fun allowed. : :iter maximum number of iterations allowed. : :epsg threshold on gradient norm. : :epsf threshold controlling decreasing of f : :epsx threshold controlling variation of x. This vector (possibly
matrix) of same size as x0 can be used to scale x.:
: :p Column vector, optimal solution found : :err scalar, least square error. :
datafit is used for fitting data to a model. For a given function G(p,z), this function finds the best vector of parameters p for approximating G(p,z_i)=0 for a set of measurement vectors z_i. Vector p is found by minimizing G(p,z_1)’WG(p,z_1)+G(p,z_2)’WG(p,z_2)+...+G(p,z_n)’WG(p,z_n)
datafit is an improved version of fit_dat.
//generate the data
function y=FF(x, p)
y=p(1)*(x-p(2))+p(3)*x.*x
endfunction
X=[];Y=[];
pg=[34;12;14] //parameter used to generate data
for x=0:.1:3
Y=[Y,FF(x,pg)+100*(`rand`_()-.5)];
X=[X,x];
end
Z=[Y;X];
//The criterion function
function e=G(p, z),
y=z(1),x=z(2);
e=y-FF(x,p),
endfunction
//Solve the problem
p0=[3;5;10]
[p,err]=datafit(G,Z,p0);
`scf`_(0);`clf`_()
`plot2d`_(X,FF(X,pg),5) //the curve without noise
`plot2d`_(X,Y,-1) // the noisy data
`plot2d`_(X,FF(X,p),12) //the solution
//the gradient of the criterion function
function s=DG(p, z),
a=p(1),b=p(2),c=p(3),y=z(1),x=z(2),
s=-[x-b,-a,x*x]
endfunction
[p,err]=datafit(G,DG,Z,p0);
`scf`_(1);
`clf`_()
`plot2d`_(X,FF(X,pg),5) //the curve without noise
`plot2d`_(X,Y,-1) // the noisy data
`plot2d`_(X,FF(X,p),12) //the solution
// Add some bounds on the estimate of the parameters
// We want positive estimation (the result will not change)
[p,err]=datafit(G,DG,Z,'b',[0;0;0],[%inf;%inf;%inf],p0,algo='gc');
`scf`_(1);
`clf`_()
`plot2d`_(X,FF(X,pg),5) //the curve without noise
`plot2d`_(X,Y,-1) // the noisy data
`plot2d`_(X,FF(X,p),12) //the solution