inverse of matrix pencil
[Bfs,Bis,chis]=glever(E,A [,s])
:E, A two real square matrices of same dimensions : :s character string (default value ‘ s‘) : :Bfs,Bis two polynomial matrices : :chis polynomial :
Computation of
(s*E-A)^-1
by generalized Leverrier’s algorithm for a matrix pencil.
(s*E-A)^-1 = (Bfs/chis) - Bis.
chis = characteristic polynomial (up to a multiplicative constant).
Bfs = numerator polynomial matrix.
Bis = polynomial matrix ( - expansion of (s*E-A)^-1 at infinity).
Note the - sign before Bis.
This function uses cleanp to simplify Bfs,Bis and chis.
s=%s;F=[-1,s,0,0;0,-1,0,0;0,0,s-2,0;0,0,0,s-1];
[Bfs,Bis,chis]=glever(F)
`inv`_(F)-((Bfs/chis) - Bis)