Lyapunov equation
[X]=lyap(A,C,'c')
[X]=lyap(A,C,'d')
:A, C real square matrices, C must be symmetric :
X= lyap(A,C,flag) solves the continuous time or discrete time matrix Lyapunov matrix equation:
A'*X + X*A = C ( flag='c' )
A'*X*A - X = C ( flag='d' )
Note that a unique solution exist if and only if an eigenvalue of A is not an eigenvalue of -A ( flag=’c’) or 1 over an eigenvalue of A ( flag=’d’).
A=`rand`_(4,4);C=`rand`_(A);C=C+C';
X=lyap(A,C,'c');
A'*X + X*A -C
X=lyap(A,C,'d');
A'*X*A - X -C