Floating point rational approximation
[N,D]=rat(X [,tol])
Y=rat(X [,tol])
:X real vector or matrix : :tol real positive scalar, the tolerance (see below). Default value
is 1d-6.
: :N integer vector or matrix : :D integer vector or matrix : :Y real vector or matrix :
[N,D] = rat(X,tol) returns two integer matrices so that N./D is close to X in the sense that abs(N./D - X) <= tol*norm(X,1)*abs(X).
y=rat(x,tol) return the quotient N./D
The rational approximations are generated by truncating continued fraction expansions.
[n,d]=rat([3.5, 1.333333,-0.8])
[n,d]=rat(%pi)
[n,d]=rat(%pi,1.d-12)
n/d-%pi