Minimax approximation of magnitude response
[an]=remezb(nc,fg,ds,wt)
:nc Number of cosine functions : :fg Grid of frequency points in [0,.5) : :ds Desired magnitude on grid fg : :wt Weighting function on error on grid fg : :an Cosine filter coefficients :
Minimax approximation of a frequency domain magnitude response. The approximation takes the form h = sum[a(n)*cos(wn)] for n=0,1,...,nc. An FIR, linear-phase filter can be obtained from the output of the function by using the following commands
hn(1:nc-1)=an(nc:-1:2)/2;
hn(nc)=an(1);
hn(nc+1:2*nc-1)=an(2:nc)/2;
// Choose the number of cosine functions and create a dense grid
// in [0,.24) and [.26,.5)
nc=21;ngrid=nc*16;
fg=.24*(0:ngrid/2-1)/(ngrid/2-1);
fg(ngrid/2+1:ngrid)=fg(1:ngrid/2)+.26*`ones`_(1:ngrid/2);
// Specify a low pass filter magnitude for the desired response
ds(1:ngrid/2)=`ones`_(1:ngrid/2);
ds(ngrid/2+1:ngrid)=`zeros`_(1:ngrid/2);
// Specify a uniform weighting function
wt=`ones`_(fg);
// Run remezb
an=remezb(nc,fg,ds,wt)
// Make a linear phase FIR filter
hn(1:nc-1)=an(nc:-1:2)/2;
hn(nc)=an(1);
hn(nc+1:2*nc-1)=an(2:nc)/2;
// Plot the filter's magnitude response
`plot`_(.5*(0:255)/256,`frmag`_(hn,256));
// Choose the number of cosine functions and create a dense grid in [0,.5)
nc=21; ngrid=nc*16;
fg=.5*(0:(ngrid-1))/ngrid;
// Specify a triangular shaped magnitude for the desired response
ds(1:ngrid/2)=(0:ngrid/2-1)/(ngrid/2-1);
ds(ngrid/2+1:ngrid)=ds(ngrid/2:-1:1);
// Specify a uniform weighting function
wt=`ones`_(fg);
// Run remezb
an=remezb(nc,fg,ds,wt)
// Make a linear phase FIR filter
hn(1:nc-1)=an(nc:-1:2)/2;
hn(nc)=an(1);
hn(nc+1:2*nc-1)=an(2:nc)/2;
// Plot the filter's magnitude response
`plot`_(.5*(0:255)/256,`frmag`_(hn,256));