Recursive Prediction-Error Minimization estimation
[w1,[v]]=rpem(w0,u0,y0,[lambda,[k,[c]]])
w0 list(theta,p,l,phi,psi) where: | |
---|---|
: :p (3*n x 3*n) real matrix. : :phi,psi,l real vector of dimension 3*n : |
Applicable values for the first call:
theta=phi=psi=l=0*`ones`_(1,3*n). p=`eye`_(3*n,3*n)
:
:lambda optional argument (forgetting constant) choosed close to 1 as convergence occur: lambda=[lambda0,alfa,beta] evolves according to :
lambda(t)=alfa*lambda(t-1)+`beta`_
with lambda(0)=lambda0 : :k contraction factor to be chosen close to 1 as convergence occurs. k=[k0,mu,nu] evolves according to:
k(t)=mu*k(t-1)+nu
with k(0)=k0. : :c Large argument.( c=1000 is the default value). :
:w1 Update for w0. : :v sum of squared prediction errors on u0, y0.(optional). In
particular w1(1) is the new estimate of theta. If a new sample u1, y1 is available the update is obtained by: [w2,[v]]=rpem(w1,u1,y1,[lambda,[k,[c]]]). Arbitrary large series can thus be treated.
:
Recursive estimation of arguments in an ARMAX model. Uses Ljung- Soderstrom recursive prediction error method. Model considered is the following:
y(t)+a(1)*y(t-1)+...+a(n)*y(t-n)=
b(1)*u(t-1)+...+b(n)*u(t-n)+e(t)+c(1)*e(t-1)+...+c(n)*e(t-n)
The effect of this command is to update the estimation of unknown argument theta=[a,b,c] with
a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)].