Solve semidefinite problems.
x=semidef(x0,Z0,F,blocksizes,c,options)
[x,Z]=semidef(...)
[x,Z,ul]=semidef(...)
[x,Z,ul,info]=semidef(...)
: :F L-by-(m+1) real matrix : :blocksizes p-by-2 integer matrix (sizes of the blocks) defining the
dimensions of the (square) diagonal blocks size(Fi(j)=blocksizes(j) j=1,...,m+1.
: :c m-by-1 real vector : :options a 1-by-5 matrix of doubles [nu,abstol,reltol,tv,maxiters] : :ul a 1-by-2 matrix of doubles. :
semidef solves the semidefinite program:
and its dual:
exploiting block structure in the matrices F_i. Here, Tr is the trace operator, i.e. the sum of the diagonal entries of the matrix.
The problem data are the vector c and m+1 block-diagonal symmetric matrices F0, F1, ..., Fm. Moreover, we assume that the matrices Fi have L diagonal blocks.
The Fi’s matrices are stored columnwise in F in compressed format: if F_i^j, i=0,..,m, j=1,...,L denote the jth (symmetric) diagonal block of F_i, then
where, for each symmetric block M, the vector cmp(M) is the compressed representation of M, that is [M(1,1);M(1,2);...;M(1,n);M(2,2);M(2,3);...;M(2,n);...;M(n,n)], obtained by scanning rowwise the upper triangular part of M.
For example, the matrix
is stored as
[1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
with blocksizes=[2,3,1].
In order to create the matrix F, the user can combine the list2vec and pack function, as described in the example below.
blocksizes gives the size of block j, ie, size(F_i^j)=blocksizes(j).
Z is a block diagonal matrix with L blocks Z^0, ..., Z^{L-1} . Z^j has size blocksizes[j] times blocksizes[j] .Every block is stored using packed storage of the lower triangular part.
The 1-by-2 matrix of doubles ul contains the primal objective value c’*x and the dual objective value -trace(F_0*Z).
The entries of options are respectively:
On output, the info variable contains the status of the execution.
Convergence criterion is based on the following conditions that is, the algorithm stops if one of the following conditions is true:
// 1. Define the initial guess
x0=[0;0];
//
// 2. Create a compressed representation of F
// Define 3 symmetric block-diagonal matrices: F0, F1, F2
F0=[2,1,0,0;
1,2,0,0;
0,0,3,1;
0,0,1,3]
F1=[1,2,0,0;
2,1,0,0;
0,0,1,3;
0,0,3,1]
F2=[2,2,0,0;
2,2,0,0;
0,0,3,4;
0,0,4,4]
// Define the size of the two blocks:
// the first block has size 2,
// the second block has size 2.
blocksizes=[2,2];
// Extract the two blocks of the matrices.
F01=F0(1:2,1:2);
F02=F0(3:4,3:4);
F11=F1(1:2,1:2);
F12=F1(3:4,3:4);
F21=F2(1:2,1:2);
F22=F2(3:4,3:4);
// Create 3 column vectors, containing nonzero entries
// in F0, F1, F2.
F0nnz = `list2vec`_(`list`_(F01,F02));
F1nnz = `list2vec`_(`list`_(F11,F12));
F2nnz = `list2vec`_(`list`_(F21,F22));
// Create a 16-by-3 matrix, representing the
// nonzero entries of the 3 matrices F0, F1, F2.
FF=[F0nnz,F1nnz,F2nnz]
// Compress FF
CFF = `pack`_(FF,blocksizes);
//
// 3. Create a compressed representation of Z
// Create the matrix Z0
Z0=2*F0;
// Extract the two blocks of the matrix
Z01=Z0(1:2,1:2);
Z02=Z0(3:4,3:4);
// Create 2 column vectors, containing nonzero entries
// in Z0.
ZZ0 = [Z01(:);Z02(:)];
// Compress ZZO
CZZ0 = `pack`_(ZZ0,blocksizes);
//
// 4. Create the linear vector c
c=[`trace`_(F1*Z0);`trace`_(F2*Z0)];
//
// 5. Define the algorithm options
options=[10,1.d-10,1.d-10,0,50];
// 6. Solve the problem
[x,CZ,ul,info]=semidef(x0,CZZ0,CFF,blocksizes,c,options)
//
// 7. Check the output
// Unpack CZ
Z=`unpack`_(CZ,blocksizes);
w=`vec2list`_(Z,[blocksizes;blocksizes]);
Z=`sysdiag`_(w(1),w(2))
c'*x+`trace`_(F0*Z)
// Check that the eigenvalues of the matrix are positive
`spec`_(F0+F1*x(1)+F2*x(2))
`trace`_(F1*Z)-c(1)
`trace`_(F2*Z)-c(2)
This function is based on L. Vandenberghe and S. Boyd sp.c program.
L. Vandenberghe and S. Boyd, ” Semidefinite Programming,” Informations Systems Laboratory, Stanford University, 1994.
Ju. E. Nesterov and M. J. Todd, “Self-Scaled Cones and Interior-Point Methods in Nonlinear Programming,” Working Paper, CORE, Catholic University of Louvain, Louvain-la-Neuve, Belgium, April 1994.
SP: Software for Semidefinite Programming, User’s Guide, Beta Version, November 1994, L. Vandenberghe and S. Boyd, 1994 http://www.ee.ucla.edu/~vandenbe/sp.html