dae

Differential algebraic equations solver

Calling Sequence

y=dae(initial,t0,t,res)
[y [,hd]]=dae(initial,t0,t [,rtol, [atol]],res [,jac] [,hd])
[y,rd]=dae("root",initial,t0,t,res,ng,surface)
[y ,rd [,hd]]=dae("root",initial,t0,t [,rtol, [atol]],res [,jac], ng, surface [,hd])

Arguments

:initial a column vector. It may be equal to x0 or [x0;xdot0].
Where x0 is the state value at initial time t0 and xdot0 is the initial state derivative value or an estimation of it (see below).

: :t0 a real number, the initial time. : :t a real scalar or vector. Gives instants for which you want the

solution. Note that you can get solution at each dae’s step point by setting ``%DAEOPTIONS`_(2)=1` .
: :rtol a real scalar or a column vector of same size as x0, the
relative error tolerance of solution. If rtol is a vector the tolerances are specified for each component of the state.
: :atol a real scalar or a column vector of same size as x0, the
absolute error tolerance of solution. If atol is a vector the tolerances are specified for each component of the state.

: :res an external function computes the value of g(t,y,ydot). It may be

:a Scilab function In this case, its calling sequence must be
[r,ires]=res(t,x,xdot) and res must return the residue r=g(t,x,xdot) and error flag ires. ires = 0 if res succeeds to compute r. ires = -1 if residue is locally not defined for g(t,x,xdot). ires =-2 if parameters are out of admissible range.

: :a list This form of external is used to pass parameters to the function. It must be as follows:

    `list`_(res,p1,p2,...)

where the calling sequence of the function `res` is now
    r=res(t,y,ydot,p1,p2,...)

`res` still returns the residual value as a function of
  `(t,x,xdot,x1,x2,...)`, and `p1, p2,...` are function parameters.
: :a character string it must refer to the name of a C or fortran
routine, assuming that < `r_name`> is the given name.

    + The Fortran calling sequence must be
      `<r_name>(t,x,xdot,res,ires,rpar,ipar)` `double precision
      t,x(*),xdot(*),res(*),rpar(*)` `integer ires,ipar(*)`
    + The C calling sequence must be `C2F(<r_name>)(double *t, double *x,
      double *xdot, double *res, integer *ires, double *rpar, integer
      *ipar)`
where

    + `t` is the current time value
    + `x` the state array
    + `xdot` the array of state derivatives
    + `res` the array of residuals
    + `ires` the execution indicator
    + `rpar` is the array of floating point parameter values, needed but
      cannot be set by the `dae` function
    + `ipar` is the array of floating integer parameter values, needed but
      cannot be set by the `dae` function

:

: :jac an external computes the value of dg/dx+cj*dg/dxdot for a given value of parameter cj. It may be

:a Scilab function Its calling sequence must be r=jac(t,x,xdot,cj)
and the jac function must return r=dg(t,x,xdot)/dy+cj*dg(t,x,xdot)/dxdot where cj is a real scalar.

: :a list This form of external is used to pass parameters to the function. It must be as follows:

    `list`_(jac,p1,p2,...)

where the calling sequence of the function `jac` is now
    r=jac(t,x,xdot,p1,p2,...)

`jac` still returns `dg/dx+cj*dg/dxdot` as a function of
  `(t,x,xdot,cj,p1,p2,...)`.
: :a character string it must refer to the name of a C or fortran
routine assuming that <j_name> is the given name.

    + The Fortran calling sequence must be `<j_name>(t, x, xdot, r, cj,
      ires, rpar, ipar)` double precision `t, x(*), xdot(*), r(*), ci,
      rpar(*)` integer `ires, ipar(*)`
    + The C calling sequence must be `C2F(<j_name>)(double *t, double *x,
      double *xdot, double *r, double *cj, integer *ires, double *rpar,
      integer *ipar)`
where `t, x, xdot, ires, rpar, ipar` have similar definition as above,
  `r` is the results array
:

: :surface an external computes the value of the column vector surface(t,x) with ng components. Each component defines a surface.

:a Scilab function Its calling sequence must be r=surface(t,x), this
function must return a vector with ng elements.

: :a list This form of external is used to pass parameters to the function. It must be as follows:

    `list`_(surface,p1,p2,...)

where the calling sequence of the function `surface` is now
    r=surface(t,x,p1,p2,...)


: :a character string it must refer to the name of a C or fortran
routine. Assuming that <s_name> is the given name,

    + `The Fortran calling sequence must be` `<s_name>(nx, t, x, ng, r,
      rpar, ipar)` `double precision t, x(*), r(*), rpar(*)` `integer nx,
      ng,ipar(*)`
    + The C calling sequence must be `C2F(<s_name>)(double *t, double *x,
      double *xdot, double *r, double *cj, integer *ires, double *rpar,
      integer *ipar)`
where `t, x, rpar, ipar` have similar definition as above, `ng` is the
  number of surfaces, `nx` the dimension of the state and r is the
  results array.
:
: :rd a vector with two entries [times num] where times is the
value of the time at which the surface is crossed, num is the number of the crossed surface
: :hd a real vector, as an output it stores the dae context. It can
be used as an input argument to resume integration (hot restart).
: :y a real matrix. If ``%DAEOPTIONS`_(2)=1` , each column is the
vector [t;x(t);xdot(t)] where t is time index for which the solution had been computed. Else y is the vector [x(t);xdot(t)].

:

Description

The dae function is a gateway built above the dassl and dasrt function designed for implicit differential equations integration.

g(t,x,xdot)=0
x(t0)=x0  `and`_   xdot(t0)=xdot0

If xdot0 is not given in the initial argument, the dae function tries to compute it solving g(t,x0,xdot0)=0.

if xdot0 is given in the initial argument it may be either a compatible derivative satisfying g(t,x0,xdot0)=0 or an approximate value. In the latter case `%DAEOPTIONS`_(7) must be set to 1.

Detailed examples using Scilab and C coded externals are given in modules/differential_equations/tests/unit_tests/dassldasrt.tst

Examples

//Example with Scilab  code
function [r, ires]=chemres(t, y, yd)
    r(1) = -0.04*y(1) + 1d4*y(2)*y(3) - yd(1);
    r(2) =  0.04*y(1) - 1d4*y(2)*y(3) - 3d7*y(2)*y(2) - yd(2);
    r(3) =       y(1) +     y(2)      + y(3)-1;
    ires =  0;
endfunction
function pd=chemjac(x, y, yd, cj)
    pd=[-0.04-cj , 1d4*y(3)               , 1d4*y(2);
         0.04    ,-1d4*y(3)-2*3d7*y(2)-cj ,-1d4*y(2);
         1       , 1                      , 1       ]
endfunction

x0=[1; 0; 0];
xd0=[-0.04; 0.04; 0];
t=[1.d-5:0.02:.4, 0.41:.1:4, 40, 400, 4000, 40000, 4d5, 4d6, 4d7, 4d8, 4d9, 4d10];

y=dae([x0,xd0],0,t,chemres);// returns requested observation time points

%DAEOPTIONS=`list`_([],1,[],[],[],0,0); // ask  dae mesh points to be returned
y=dae([x0,xd0],0,4d10,chemres); // without jacobian
y=dae([x0,xd0],0,4d10,chemres,chemjac); // with jacobian

//example with C code (C compiler needed) --------------------------------------------------
//-1- create the C codes in TMPDIR - Vanderpol equation, implicit form
code=['#include <math.h>'
      'void res22(double *t,double *y,double *yd,double *res,int *ires,double *rpar,int *ipar)'
      '{res[0] = yd[0] - y[1];'
      ' res[1] = yd[1] - (100.0*(1.0 - y[0]*y[0])*y[1] - y[0]);}'
      ' '
      'void jac22(double *t,double *y,double *yd,double *pd,double *cj,double *rpar,int *ipar)'
      '{pd[0]=*cj - 0.0;'
      ' pd[1]=    - (-200.0*y[0]*y[1] - 1.0);'
      ' pd[2]=    - 1.0;'
      ' pd[3]=*cj - (100.0*(1.0 - y[0]*y[0]));}'
      ' '
      'void gr22(int *neq, double *t, double *y, int *ng, double *groot, double *rpar, int *ipar)'
      '{ groot[0] = y[0];}']
`cd`_ TMPDIR;
`mputl`_(code, 't22.c')
//-2- compile and load them
`ilib_for_link`_(['res22' 'jac22' 'gr22'],'t22.c',[],'c',TMPDIR+'/Makefile',TMPDIR+'/t22loader.sce');
`exec`_('t22loader.sce')
//-3- run
rtol=[1.d-6;1.d-6];atol=[1.d-6;1.d-4];
t0=0;y0=[2;0];y0d=[0;-2];t=[20:20:200];ng=1;
//simple simulation
t=0:0.003:300;
yy=dae([y0,y0d],t0,t,atol,rtol,'res22','jac22');
`clf`_();`plot`_(yy(1,:),yy(2,:))
//find first point where yy(1)=0
[yy,nn,hotd]=dae("root",[y0,y0d],t0,300,atol,rtol,'res22','jac22',ng,'gr22');
`plot`_(yy(1,1),yy(2,1),'r+')
`xstring`_(yy(1,1)+0.1,yy(2,1),`string`_(nn(1)))

//hot restart for next point
t01=nn(1);[pp,qq]=`size`_(yy);y01=yy(2:3,qq);y0d1=yy(3:4,qq);
[yy,nn,hotd]=dae("root",[y01,y0d1],t01,300,atol,rtol,'res22','jac22',ng,'gr22',hotd);
`plot`_(yy(1,1),yy(2,1),'r+')
`xstring`_(yy(1,1)+0.1,yy(2,1),`string`_(nn(1)))

See Also

  • ode ordinary differential equation solver
  • daeoptions set options for dae solver
  • dassl differential algebraic equation
  • impl differential algebraic equation
  • fort Fortran or C user routines call
  • link dynamic linker
  • external Scilab Object, external function or routine

Table Of Contents

This Page