multi-objective genetic algorithm
[pop_opt,fobj_pop_opt,pop_init,fobj_pop_init] = optim_moga(ga_f,pop_size,nb_generation,p_mut,p_cross,Log,param)
:ga_f the function to be optimized. The header of the function is the following :
y = f(x)
or
y = `list`_(f,p1,p2,...)
: :p_mut the mutation probability (default value: 0.1). : :p_cross the crossover probability (default value: 0.7). : :Log if %T, we will display to information message during the run of
the genetic algorithm.
: :param a list of parameters.
- ‘codage_func’: the function which will perform the coding and decoding of individuals (default function: codage_identity).
- ‘init_func’: the function which will perform the initialization of the population (default function: init_ga_default).
- ‘crossover_func’: the function which will perform the crossover between two individuals (default function: crossover_ga_default).
- ‘mutation_func’: the function which will perform the mutation of one individual (default function: mutation_ga_default).
- ‘selection_func’: the function whcih will perform the selection of individuals at the end of a generation (default function: selection_ga_elitist).
- ‘nb_couples’: the number of couples which will be selected so as to perform the crossover and mutation (default value: 100).
- ‘pressure’: the value the efficiency of the worst individual (default value: 0.05).
: :pop_opt the population of optimal individuals. : :fobj_pop_opt the set of multi-objective function values associated
to pop_opt (optional).
: :pop_init the initial population of individuals (optional). : :fobj_pop_init the set of multi-objective function values associated
to pop_init (optional).
: