optim_nsga2

A multi-objective Niched Sharing Genetic Algorithm version 2

Calling Sequence

[pop_opt,fobj_pop_opt,pop_init,fobj_pop_init] = optim_nsga2(ga_f,pop_size,nb_generation,p_mut,p_cross,Log,param)

Arguments

:ga_f the function to be optimized. The prototype if y = f(x) or y =
list(f,p1,p2,...).
: :pop_size the size of the population of individuals (default value:
100).
: :nb_generation the number of generations (equivalent to the number
of iterations in classical optimization) to be computed (default value: 10).

: :p_mut the mutation probability (default value: 0.1). : :p_cross the crossover probability (default value: 0.7). : :Log if %T, we will display to information message during the run of

the genetic algorithm.

: :param a list of parameters.

  • ‘codage_func’: the function which will perform the coding and decoding of individuals (default function: codage_identity).
  • ‘init_func’: the function which will perform the initialization of the population (default function: init_ga_default).
  • ‘crossover_func’: the function which will perform the crossover between two individuals (default function: crossover_ga_default).
  • ‘mutation_func’: the function which will perform the mutation of one individual (default function: mutation_ga_default).
  • ‘selection_func’: the function whcih will perform the selection of individuals at the end of a generation (default function: selection_ga_elitist).
  • ‘nb_couples’: the number of couples which will be selected so as to perform the crossover and mutation (default value: 100).
  • ‘pressure’: the value the efficiency of the worst individual (default value: 0.05).

: :pop_opt the population of optimal individuals. : :fobj_pop_opt the set of objective function values associated to

pop_opt (optional).

: :pop_init the initial population of individuals (optional). : :fobj_pop_init the set of objective function values associated to

pop_init (optional).

:

Description

  • This function implements the classical “Niched Sharing Genetic Algorithm”. For a demonstration, see SCI/modules/genetic_algorithms/examples/NSGA2demo.sce.

See Also

  • optim_moga multi-objective genetic algorithm
  • optim_ga A flexible genetic algorithm
  • optim_nsga A multi-objective Niched Sharing Genetic Algorithm

Table Of Contents

This Page